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a b s t r a c t

Outdoor video rain streaks removal is an important inverse problem in video processing
that benefits subsequent applications. Traditional methods utilize prior information
with interpretable domain knowledge while they are not tenable to capture complex
structures of real-world videos. Deep learning methods learn a deraining mapping with
a large model capacity brought by deep neural networks and their performances highly
depend on the volume and diversity of training data. To address the challenging video
deraining problem, we suggest an unsupervised video rain streaks removal method by
solely using the observed rainy video. For the complex clean video, inspired by the
classical foreground–background decomposition, we employ a deep convolutional neural
network to capture the moving foreground and a disentangled deep spatial–temporal
network with an affine operator to capture the underlying low-rank structure of the
dynamic background. The foreground and background components are well balanced by
a learnable probability mask. For structured rain streaks, we introduce a learnable total
variation regularization whose parameters (i.e., rain directions) can be unsupervisedly
learned. The deep modeling of the complex clean video and the simple yet effective
modeling of structured rain streaks under the physical interpretable decomposition
framework, which benefit each other in nature, are organically integrated to boost the
deraining performance. Extensive experiments on synthetic and real-world rainy videos
demonstrate the superiority of our method over state-of-the-art traditional and deep
learning-based video deraining methods.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Videos recorded in the rainy weather usually undergo rain streaks, which severely affect the visual quality and
ubsequent applications, e.g., classification [1], detection [2], and segmentation [3]. Therefore, it is of great importance to
emove the rain streaks from the rainy videos [4], which is an important inverse problem in video processing (see Fig. 1).
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Fig. 1. The visual results by different video deraining methods on a real rainy video frame. Our unsupervised method outperforms state-of-the-art
supervised learning methods [5,6].

Many traditional methods have been proposed for video deraining [7–10]. These methods utilize prior information
f rain streaks [11–17] and clean videos [18–21] to form optimization models, which are solved by algorithms such as
xpectation–maximization [15], alternating minimization [14], or alternating direction method of multipliers (ADMM) [19,
1]. These traditional methods are suitable for both synthetic rainy videos and real-world rainy videos since they are based
n hand-crafted prior knowledge, which does not depend on training data.
Inspired by the success of deep learning for inverse problems in imaging [22–24], many deep learning methods

ere recently proposed for video deraining. These methods design deep neural networks for end-to-end deraining with
bundant training data [5,6,25–33]. The deep neural networks hold high representation abilities and thus can learn
omplex deraining mapping.
Although these traditional and deep learning methods achieve promising performance, they still face the following

hallenges for video deraining.

(1) The clean video has complex structures, e.g., moving foreground and dynamic background. For traditional methods,
they are hard to fully depict the complex scenarios due to insufficient representation abilities. For deep learning
methods, they are hard to collect synthetic training data containing all these complex scenes. Thus, deep leaning
methods suffer from domain shift between training data and real-world complex rain scenarios and their perfor-
mances would degrade on real-world data. How to robustly and appropriately model the complex clean video is one
important challenge.

(2) Rain streaks, which are usually in line patterns, are more structured as compared with clean videos. How to elegantly
model the structures of rain streaks, e.g., the rain directions, is another crucial aspect for video deraining.

o tackle these challenges, we propose an unsupervised video deraining method with deep foreground–background
odeling. For the clean video, inspired by the foreground–background decomposition, we suggest an unsupervised deep
onvolutional neural network (CNN) to characterize the foreground and a disentangled spatial–temporal network with an
ffine operator to exploit the implicit low-rankness of dynamic background. The foreground and background are balanced
y a learnable probability mask. Moreover, we learn an optical flow field to enhance temporal consistency. Our deep
oreground–background modeling has both high representation abilities brought by the CNN and good data adaptability
ith interpretable prior knowledge.
For rain streaks, we suggest a learnable total variation (LTV) regularization to faithfully capture the rain direction

hrough the directional smoothness of rain streaks. Instead of tailoring a network to capture the structures of rain
treaks [34,35], the hand-crafted LTV is simple yet effective to harness the structures of rain streaks, where the key factor,
.e., the rain direction, is unsupervisedly learned.

We summarize the contributions of this paper as follows:

(1) We propose an unsupervised video rain streaks removal method. The deep foreground–background modeling of the
complex clean video and the simple yet effective modeling of structured rain streaks under the basic decomposition
framework, which benefit each other in nature, are organically reconciled to enhance the deraining performance.
All of the modules have clear physical interpretations and the CNN parameters are unsupervisedly inferred from the
observed rainy video.

(2) To address the resulting video deraining model, we develop an efficient ADMM-based algorithm. Vast experiments
on both simulated and real-world data validate the superiority of our method over state-of-the-art traditional
methods [19–21] and deep learning methods [5,6,28] in terms of qualitative and quantitative results, especially for
rain removal and details preserving.
2
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1.1. Related work

Single image restoration, e.g., deraining, has been widely studied in the literature. Traditional methods used prior
nformation to establish optimization models. These techniques included sparse coding [36,37], low-rankness [13],
onlocal means filters [38], convolutional filters [39], Gaussian mixture model [40], fractional-order derivative [41], etc. In
ecent years, deep learning has made outstanding contributions for the single image deraining. These methods designed
eural networks focusing on details preserving [42–44], rain detection [45], rain density estimation [34,46], optimization
odel unfolding [47], rain generation [48], etc. Meanwhile, many popular deep learning technical tools were applied for

mage deraining, e.g., transfer learning [49], residual learning [50], continual learning [51], fusion network [52], attention
etwork [53,54], generative adversarial network [55,56], and others [57–60]. Most of these methods learn deep priors
rom synthetic training datasets, which inevitably neglect the physical structures of rain streaks and clean images.

As compared to single image deraining, video deraining methods effectively utilize temporal information of videos.
arg and Nayar [7,8] used a linear spatial–temporal correlation model to detect rain streaks in videos. Zhang et al. [12]
ombined temporal and chromatic properties for video deraining. Later methods utilized various models or prior informa-
ion for video deraining, e.g., sparsity [18], piecewise smoothness [19], low-rankness [13,20], matrix decomposition [14],
ultiscale convolutional sparse coding [16,21], mixture of Gaussians [15], etc [9,11]. Recently, deep learning methods
ere proposed for video deraining. These methods mainly utilized CNNs [5,6,27,29] with other elaborately designed
echniques including different network structures, e.g., attention module [31], deformable convolution [32], dual-level
low [26], and different learning strategies such as rain generator [28], interaction learning [61], collaborative network [62],
elf-supervised learning [63], to name but a few [29,30,33,64]. A key module of video deraining is the optical flow, which
as widely used in both traditional methods [65] and deep learning methods [63,64]. The optical flow could effectively
apture the temporal correlation of videos to boost the deraining performances.
In the literature, there are related unsupervised approaches to obtain video representations. The unsupervised video

epresentation learning [66,67] learned present-past transitions and present-future transitions of videos by feeding the
urrent video context into the network and predict the past and future contexts, in which the learned features can benefit
he downstream task, i.e., action recognition. The deep video prior [68–70] was developed to capture the intrinsic video
rior in an unsupervised manner. The deep video prior served as prior information that benefits different applications
ncluding super-resolution [69], video inpainting [70], dehazing [68], colorization [68], etc. For the task of video deraining,
everal unsupervised methods have been proposed. Yang et al. [63,71] cleverly utilized the temporal consistency of
ideos to self-supervisedly learn the clean frame based on its adjacent rainy frames. Zhuang et al. [72] combined the
elf-supervised deep prior and hand-crafted priors to obtain both good representation and generalization abilities for
ideo deraining. Our method is distinct from these methods because we decompose the complex rainy video into simpler
omponents, i.e., foreground, background, and rain streaks. We can model these basic components more appropriately
nd easily, and the recovery of each basic component benefits each other interactively to boost the video deraining
erformance.

. The proposed method

.1. Preliminaries

Notations frequently used in this work are listed in Table 1. In addition, the total variation (TV) of a tensor X ∈ Rm×n×t

is defined as ∥X∥TV ≜
∑t

k=1(
∑m−1

i=1
∑n

j=1 |X (k)(i + 1, j) − X (k)(i, j)|+
∑m

i=1
∑n−1

j=1 |X (k)(i, j + 1) − X (k)(i, j)|). We remark that
the symbol k is the counter of the third-mode (the video temporal frames) consistently in this paper. The value of k is
taken from the set {1, 2, . . . , t}, where t denotes the total number of video frames.

We now introduce the degradation model for video deraining. A rainy video is denoted by O ∈ Rm×n×t , where m and
n are the spatial sizes and t is the number of frames. We consider the basic rain model as

O = C + R , (1)

where C, R ∈ Rm×n×t denote the clean video and rain streaks, respectively. Real-world videos usually have complex
structures, which makes it hard to directly model the holistic video. Motivated by the classical foreground–background
decomposition [73,74], we propose to decompose the foreground and background of a video, and then use the deep
modeling to respectively model the foreground and background, which allows us to more exactly capture the complex
structures of real-world videos.2 Specifically, the clean video C can be decomposed as C = (1 − P) ◦ B + P ◦ F , where
B denotes the background, F denotes the foreground, and P is the probability mask. Here, ◦ denotes the element-wise
product. Therefore, the rainy video is formulated as

O = (1 − P) ◦ B + P ◦ F + R , (2)

where 0 ≤ P ≤ 1. Our goal is to estimate the underlying clean video C = (1 − P) ◦ B + P ◦ F from the observed O. Next,
we respectively introduce our characterizations of the clean video and rain streaks to form the loss function, followed by
the ADMM-based algorithm to optimize it.

2 As far as we know, there is no formal definition of the foreground. However, from an empirical perspective, the foreground in a video can be
defined as the objects that are of most importance and activity, or that people pay attention to, e.g., the moving persons or cars in surveillance
videos.
3
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Table 1
Notations used in this paper.
Notations Interpretations

X ∈ Rm×n Matrix

X ∈ Rm×n×t Third-order tensor

Xijk The i, j, k-th element of X

X (i) The ith frontal slice (spatial slice) of X

∇t The temporal derivative operator
∇tX = X(:,:,2:t) − X(:,:,1:t−1)

⟨A,B⟩ The tensor inner product
⟨A,B⟩ =

∑
i,j,k A(i, j, k)B(i, j, k)

∥X∥F The tensor Frobenius norm
∥X∥F =

√
⟨X ,X ⟩ =

√∑
ijk X

2
ijk

∥X∥ℓ1 The tensor ℓ1-norm
∥X∥ℓ1 =

∑
ijk |Xijk|

I(X, (x, y)) The bilinear interpolation, i.e., I(X, (x, y))
denotes the bilinear interpolation result of
X at the coordinate (x, y) ∈ R2

unfold(·) The unfolding operator
unfold(·) : Rm×n×t

→ Rmn×t

fold(·) The folding operator
fold(·) : Rmn×t

→ Rm×n×t

θk The rain direction in the kth frame

τθk (·) The affine operator parameterized
by rain direction θk

τψ (·) The affine operator for background
parameterized by ψ ∈ R2×3×t

2.2. Characterizations of clean video

Due to the moving foreground and dynamic background, the temporal consistency [19,63] of video and the explicit
ow-rankness of background [16,21,75] rarely exist. To address these issues, we use an unsupervised CNN to capture the
oreground and a disentangled spatial–temporal network with an affine operator to depict the dynamic background with
mplicit low-rankness. The foreground and background are balanced through a learnable probability mask. Moreover,
e learn an optical flow to enhance temporal consistency. As compared with the direct modeling of the entire complex
ideo [68–70], our method decomposes the complex video into basic components (i.e., the foreground and background),
llowing us to model each component more easily and exactly.

.2.1. Unsupervised CNN for foreground
The complex moving foreground scenes in videos are hard to be captured by hand-crafted regularizers. Traditional

ethods assume that the foreground is sparse [76–78] or piecewise smooth [21], thus ℓ1-norm or TV regularization can
e adopted. However, objects like cars often have complex textures, which may not accord with the sparse and smooth
ssumptions. Only considering ℓ1-norm or TV without sufficient representation abilities may fail to fully capture the
oreground.

In this paper, we propose to model the foreground tensor F ∈ Rm×n×t using an unsupervised deep CNN [79]. We
consider the generative U-Net CNN [80], which can unsupervisedly capture low-level statistics with high representation
abilities [68,79]. Specifically, the foreground is obtained through F = fξ (O), where fξ (·) is a U-Net CNN [79] parameterized
y ξ , and the rainy video O is the network input. The U-Net has sufficient representation abilities to model the complex
cenes of the foreground, which would be difficult to be captured by hand-crafted regularizers. The learnable parameters
or obtaining the foreground F are the U-Net parameters ξ . Hence, the foreground F is parameterized by ξ and we can
aturally use the notation Fξ ≜ fξ (O) to denote the foreground parameterized by ξ .

.2.2. Disentangled spatial–temporal network with affine operator for background
Many traditional methods assume that the background has low-rank structures [16,76–78]. Specifically, given the

ackground tensor B ∈ Rm×n×t , they assume that its unfolding matrix B = unfold(B) ∈ Rmn×t is low-rank.
However, due to the camera movement, the background B is not strictly low-rank; see Fig. 2. To exploit the hidden

tructures of the background, we assume an implicit low-rank structure, i.e., B = τψ (̃B), where B̃ is strictly low-rank and
ψ (·) is the affine operator parameterized by ψ ∈ R2×3×t , which is related to the camera movement. This is a reasonable
nd more generalized assumption as compared with the low-rank assumption.
4
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Fig. 2. The singular values of the unfolding matrices of the rainy video O, the clean video C , the original background B, and the background with the
affine operator, i.e., B̃, on simulated data Car in Case 1. From the distributions of the singular values, we can observe that the original background
B is implicitly low-rank.

Specifically, we assume that rank(̃B) = r (r < min(mn, t)), where B̃ = unfold(̃B) is the mode-3 unfolding matrix
of B̃. From the low-rank matrix factorization theory, B̃ can be factorized as B̃ = SC, where S ∈ Rmn×r are coefficients,
C ∈ Rr×t are basis, and r < min(mn, t) is the number of basis. Inspired by the spectral unmixing [81], the coefficients
S and basis C can be physically interpreted as the spatial abundance and temporal signature, respectively. The matrix
factorization motivates us to design a disentangled spatial–temporal network to effectively and efficiently capture the
underlying low-rank structure of the background. Specifically, the spatial abundance S contains spatial information of the
video and thus we consider using an untrained U-Net sζ (·) with parameters ζ to capture the complex spatial information.
As compared, the temporal signature C has relatively simpler structures and thus we consider using a simple fully
connected network (FCN) cη(·) with parameters η to capture the temporal signature. Consequently, we have C = cµ(Z)
and S = unfold(sζ (O)), where Z is the random input matrix [82,83] of the FCN and O is the input of the U-Net. Hence, we
have B̃ = unfold(sζ (O))cη(Z). By folding the resulting matrix B̃, we can obtain the strictly low-rank tensor B̃ = fold(̃B).

Next, we introduce the definition of the affine operator. The affine operator τψ (·) is defined as (τψ (̃B))ijk = I(̃B(k), (î, ĵ)),
where[

î
ĵ

]
=

[
ψ11k ψ12k ψ13k
ψ21k ψ22k ψ23k

][ i
j
1

]
∈ R2 (3)

and I(̃B(k), (î, ĵ)) returns the bilinear interpolation result of the matrix B̃(k) at the coordinate (î, ĵ).3
Combining the disentangled spatial–temporal network and the affine operator, the background can be finally obtained

via

B = τψ

(
fold

(
unfold(sζ (O))cη(Z)

))
. (4)

This formulation captures the implicit low-rankness of the background by using the disentangled spatial–temporal
network and the affine operator. Here, the learnable parameters are ω = {ψ, ζ , η}. For simplicity, we use Bω ≜

τψ

(
fold

(
unfold(sζ (O))cη(Z)

))
to denote the background tensor B parameterized by ω.

2.2.3. Learnable probability mask
We propose to learn a probability mask P to combine the foreground and background. Specifically, we employ another

U-Net pκ (·) to obtain P , i.e., P = pκ (O), where the rainy video O is the network input. Since 0 ≤ P ≤ 1, the Sigmoid function
is adopted in the output layer of pκ (·). The probability mask P combines the foreground and background to obtain the
clean video via C = (1 − P) ◦ B + P ◦ F . Here, the learnable parameters are the U-Net parameters κ . For simplicity, we
use Pκ ≜ pκ (O) to denote the probability mask tensor parameterized by κ . Based on the basic rain model, the first loss
function is the fidelity loss function:

Lfidelity = ∥O − (1 − Pκ ) ◦ Bω − Pκ ◦ Fξ − R ∥
2
F . (5)

Next, we form the loss function for the probability mask. First, the probability mask P should be close to 0 or 1 [84]. Note
that P is not strictly binary as assumed in other models [21], as objects like transparent objects cannot be simply classified
as background or foreground. Secondly, we consider a sparse constraint on Pκ to depict the sparsity of the foreground.
Thirdly, to distinguish between rain streaks and relatively smoother foreground, we consider the TV regularization on Pκ .
Therefore, we have the following loss function for probability mask:

Lmask = λ1
1

∥Pκ − 0.5∥ℓ1
+ λ2∥Pκ∥ℓ1 + λ3∥Pκ∥TV. (6)

3 Here, î and ĵ may not be integers. Thus, we use the bilinear interpolation to obtain the value of B̃(k) at the coordinate (î, ĵ).
5
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In Lmask, the first term encourages the learned probability mask Pκ to be close to 0 or 1.

.2.4. Learnable optical flow field
The temporal consistency4 is widely utilized in video deraining [18,19,63]. The temporal consistency can be exploited

hrough minimizing ∥∇tC∥ℓ1 , where C is the underlying clean video and ∇t is the temporal derivative operator [18].
owever, due to dynamic objects or camera movements, the temporal consistency is rarely satisfied. Therefore, we
ntroduce a learnable optical flow field to align adjacent frames to enhance the temporal consistency.

More concretely, given a tensor C ∈ Rm×n×t , we propose a learnable optical flow field µ ∈ Rp×2×t to align its adjacent
frames. Here, the elements of µ represent the spatial shift distance. Each frame of C is divided into p patches, and the
elements in the same patch share the same spatial shifts. Under the optical flow µ, the aligned result Ĉ is obtained through
Ĉijk = I(C (k), (î, ĵ)), where î = i + µv1k and ĵ = j + µv2k. Here, v indicates that the coordinate (i, j) locates in the vth patch
in a frame (v = 1, 2, . . . , p). We expect to learn the optical flow field µ such that the (k + 1)-th frame of Ĉ is aligned
with the kth frame of C . Therefore, we define the temporal derivative operator with the optical flow tensor µ, denoted
by ∇µ, as ∇µC ≜ C(:,:,2:t) − Ĉ(:,:,1:t−1). We can minimize the ℓ1-norm of ∇µC to depict the temporal consistency. Note that

= (1 − P) ◦ B + P ◦ F . Thus, we have the following temporal consistency loss:

Ltemporal = ∥∇µ((1 − Pκ ) ◦ Bω + Pκ ◦ Fξ )∥ℓ1 . (7)

Here, the learnable parameter is the optical flow tensor µ.

2.3. Characterizations of rain streaks

2.3.1. Learnable total variation
Next, we consider the characterizations of rain streaks. Earlier methods assume that rain streaks are vertical, and the

directional smoothness can be utilized to remove vertical rain streaks [18]. However, rain streaks often have different
directions. Later methods designed techniques to capture different rain directions [17,34]. However, these techniques
either need training data [34] or need to manually determine the rain directions [17]. In this paper, we propose the LTV
regularization to automatically detect the rain directions.

Specifically, given a rain tensor R ∈ Rm×n×t , the vertical derivative operator ∇y is defined as (∇yR )(k) = H⊗R (k), where

H =

[0 1 0
0 −1 0
0 0 0

]
(8)

is the vertical derivative convolutional kernel, ⊗ is the convolutional operator, and k = 1, 2, . . . , t . Since rain streaks
are local smooth along their falling directions (which is known as the directional gradient prior or the directional
smoothness [18,19,85]), minimizing ∥∇yR ∥ℓ1 is helpful for characterizing rain streaks [18]. To capture rain streaks in
different directions, we propose t affine operators {τθk (·)}

t
k=1 with learnable parameters {θk ∈ R}

t
k=1 to modify the kernel

H, so that each new kernel τθk (H) ∈ R3×3 can extract the derivative value along the direction θk. The new kernel is defined
by (τθk (H))ij = I(H, (î, ĵ)) (i, j = 1, 2, 3), where[

î
ĵ

]
=

[
cos(θk) − sin(θk)
sin(θk) cos(θk)

][
i
j

]
. (9)

Equipped with the new kernels {τθk (H)}tk=1, we define the derivative operator ∇θ as (∇θR )(k) = (τθk (H)) ⊗ R (k) (k =

1, 2, . . . , t). Compared with the vertical derivative tensor ∇yR , the tensor ∇θR considers rain streaks in different directions
and therefore is more sparse; see Fig. 4. Thus, by minimizing ∥∇θR ∥ℓ1 , the parameter θk (which denotes the rain
direction in the kth frame) can be unsupervisedly learned, and rain streaks in different directions can be eliminated.
The corresponding LTV loss function is LLTV = ∥∇θR ∥ℓ1 . The learnable parameter are the rain directions θ = {θk}

t
k=1.

2.3.2. Sparsity of rain streaks
Rain streaks appear in a few places in the video and thus are sparser than the video content. Therefore, we consider

the sparse loss function Lsparse = ∥R ∥ℓ1 to depict such property. Here, the rain tensor R itself is learnable.

4 We remark here that the temporal consistency is considered on the clean video C , which is different from the low-rankness considered on the
ackground B in Section 2.2.2.
6
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2.4. Total loss function

Combining different loss functions, we have the following total loss function by given the observed rainy video O:

min
ξ,ω,κ
µ,θ,R

1
2
∥O − (1 − Pκ ) ◦ Bω − Pκ ◦ Fξ − R ∥

2
F + λ1/∥Pκ − 0.5∥ℓ1 + λ2∥Pκ∥ℓ1+

λ3∥Pκ∥TV + λ4∥∇µ((1 − Pκ ) ◦ Bω + Pκ ◦ Fξ )∥ℓ1 + λ5 ∥∇θR ∥ℓ1 + λ6 ∥R ∥ℓ1 .

(10)

n our loss function, the first term is the fidelity term that forces the sum of the recovered clean video and the rain streaks
o be close to the rainy video. The term λ1/∥Pκ − 0.5∥ℓ1 forces the probability mask to be close to 0 or 1. The term λ2∥Pκ∥ℓ1
onstrains the sparsity of the probability mask since the foreground in videos is sparse in both spatial and temporal
imensions. The term λ3∥Pκ∥TV constrains the smoothness of the probability mask. The term λ4∥∇µ((1−Pκ )◦Bω+Pκ◦Fξ )∥ℓ1
onstrains the temporal consistency of the recovered clean video. The term λ5 ∥∇θR ∥ℓ1 constrains the smoothness of rain
treaks along the falling direction. The term λ6 ∥R ∥ℓ1 constrains the sparsity of rain streaks.
Note that the loss function (10) solely uses the rainy video O without additional training data. However, directly solving

he above problem is difficult. We turn to develop an ADMM-based algorithm to update the learnable parameters in a
ully unsupervised manner alternately.

.5. Algorithm

To minimize the loss function (10), we develop an ADMM-based algorithm. We introduce auxiliary variables V1 ∈
m×n×t and V2 ∈ Rm×n×t , and (10) can be rewritten as

min
ξ,ω,κ,µ
θ,R ,Vk

1
2
∥O − (1 − Pκ ) ◦ Bω − Pκ ◦ Fξ − R ∥

2
F + λ1/∥Pκ − 0.5∥ℓ1 + λ2∥Pκ∥ℓ1+

λ3∥Pκ∥TV + λ4∥∇µ((1 − Pκ ) ◦ Bω + Pκ ◦ Fξ )∥ℓ1 + λ5 ∥V1∥ℓ1 + λ6 ∥V2∥ℓ1 ,

s.t. V1 = ∇θR , V2 = R .

(11)

he augmented Lagrangian function corresponding to (11) is

L(ξ, ω, κ, µ, θ, R , Vk,Λk) =

1
2
∥O − (1 − Pκ ) ◦ Bω − Pκ ◦ Fξ − R ∥

2
F + λ1/∥Pκ − 0.5∥ℓ1 + λ2∥Pκ∥ℓ1+

λ3∥Pκ∥TV + λ4∥∇µ(1 − Pκ ) ◦ Bω + Pκ ◦ Fξ∥ℓ1 + λ5 ∥V1∥ℓ1 + λ6 ∥V2∥ℓ1 +

γ

2
∥∇θR − V1∥

2
F +

γ

2
∥R − V2∥

2
F + < Λ1,∇θR − V1 > + < Λ2, R − V2 > .

(12)

Here, Λ1 and Λ2 are multipliers and γ is the penalty parameter. We can split the joint minimization problem into easier
sub-problems under the framework of ADMM.

Update V : The V1 and V2 sub-problems are⎧⎪⎨⎪⎩
min

V1

γ

2
∥∇θR +Λ1/γ − V1∥

2
F + λ5 ∥V1∥ℓ1

min
V2

γ

2
∥R +Λ2/γ − V2∥

2
F + λ6 ∥V2∥ℓ1 ,

(13)

hich can be explicitly solved by V1 = Soft λ5
γ

(∇θR + Λ1/γ ) and V2 = Soft λ6
γ

(R + Λ2/γ ), where Softa(·) denotes the
oft-thresholding operator [18].
Update {ξ, ω,µ, θ}: The variables {ξ, ω,µ, θ} can be updated simultaneously in one sub-problem:

min
ξ,ω,µ,θ

λ4∥∇µ((1 − Pκ ) ◦ Bω + Pκ ◦ Fξ )∥ℓ1 +
γ

2
∥∇θR − V1 + (Λ1/γ )∥2

F +

1
2
∥O − (1 − Pκ ) ◦ Bω − Pκ ◦ Fξ − R ∥

2
F .

(14)

ue to the non-convexity of the above sub-problem, we utilize the adaptive moment estimation (Adam) algorithm [86]
o solve it. At each iteration of the ADMM-based algorithm, we employ 10 steps of the Adam to update {ξ, ω,µ, θ}.

Update κ: This κ sub-problem is

min
κ

1
2
∥O − (1 − Pκ ) ◦ Bω − Pκ ◦ Fξ − R ∥

2
F + λ1/∥Pκ − 0.5∥ℓ1+

λ2∥Pκ∥ℓ1 + λ3∥Pκ∥TV.

(15)

Similarly, we employ 10 steps of the Adam to update the U-Net parameters κ in each iteration of the ADMM-based
algorithm.
7
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Fig. 3. The overall flowchart of our video deraining method. We use a U-Net to capture the foreground Fξ and a disentangled spatial–temporal
etwork with the affine operator to capture the background Bω . Meanwhile, we learn a probability mask Pκ to combine the foreground and
ackground. Moreover, we learn the optical flow field µ to enhance temporal consistency. The rain directions {θk}

t
k=1 are learned by minimizing the

TV loss. The resulting loss function (10), which only utilizes the observed rainy video, is minimized by using the ADMM-based algorithm. Here, the
tructure of the U-Net CNN directly follows [79] and hence is omitted.

Fig. 4. The frequency of derivative values of real-world rain streaks captured by the camera in black background [16]. (a) The elements of ∇θR ,
here the rain directions {θk}

t
k=1 are learned by using the proposed LTV. (b) The elements of ∇yR . ∇θR is more sparse than ∇yR , which reveals

the effectiveness of LTV regularization.

Update R : The R sub-problem can be split into t sub-problems of the frontal slices:

min
R (k)

γ

2

τθk (H) ⊗ R (k)
− (V1 − (Λ1/γ ))(k)

2
F +

γ

2

R (k)
− (V2 − (Λ2/γ ))(k)

2
F +

1
2
∥O(k)

− ((1 − Pκ ) ◦ Bω + Pκ ◦ Fξ )(k) − R (k)
∥
2
F , (k = 1, 2, . . . , t),

(16)

hich can be explicitly solved by

R (k)
=F −1 (

(F (O(k)
− ((1 − Pκ ) ◦ Bω + Pκ ◦ Fξ )(k) + γ (V2 − (Λ2/γ ))(k))+

γ F (τθk (H))F ((V1 − (Λ1/γ ))(k)))(1 + γ + γ F (τθk (H))F (τθk (H)))−1 )
,

(17)

here F is Fourier transform operator and F −1 is the inverse operator of F . X is the conjugate matrix of X.
Update Λ: Λ1 and Λ2 are updated by

Λ1 = Λ1 + γ (∇θR − V1), Λ2 = Λ2 + γ (R − V2). (18)

The overall flowchart of our deraining method is illustrated in Fig. 3. We remark that the main difference between the
proposed algorithm and the classical ADMM algorithm is that our algorithm includes the update of the neural network
parameters in the {ξ, ω,µ, θ} sub-problem and the κ sub-problem. Due to the high nonlinearity and non-convexity of
8
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the above sub-problems, we consider using the Adam algorithm to solve these sub-problems, which is easy to implement
under the modern deep learning frameworks.

3. Experiments

3.1. Settings

3.1.1. Datasets and evaluation metrics
We first introduce the datasets used in experiments. Since our method is an unsupervised method by solely using the

ainy video, no training datasets are needed. We next introduce the testing datasets. We consider five testing datasets.
our of them are synthetic datasets (denoted as Cases 1–4) and the other one is a real-world dataset:

• Case 1 contains 10 pairs of rainy videos and clean videos. Among the 10 clean videos, three of them are publicly
available5 ,6 and the rests are captured by a digital camera, containing diverse foreground scenes and dynamic
background. The sizes of these clean videos are 240 × 320 × 50. We generate synthetic rain streaks on these clean
videos using motion blurring. The rainy videos in Case 1 involve light rain streaks and the rain directions are sampled
from [−30◦, 30◦], where rain directions are different in different frames but are the same in a single frame.

• Case 2 contains 10 pairs of rainy videos and clean videos, where the clean videos are the same as Case 1 and rainy
videos involve heavy rain streaks and the rain directions are sampled from [−40◦, 40◦]. The rain directions are
different in different frames and are also different in a single frame.

• Case 3 contains 10 pairs of rainy videos and clean videos, where the clean videos are the same as Case 1. The rainy
videos contain synthetic rain streaks generated by photorealistic render techniques in [87] and rain streaks are heavy
with various directions in a single frame.

• Case 4 contains 4 pairs of rainy videos and clean videos in the benchmark NTURain (a) dataset [5]. The clean videos
are captured by a panning unstable camera and rain streaks are generated with the editing software Adobe After
Effects [5].

• For real-world data, we collect six publicly available real-world rainy videos7 with various types of rain streaks and
video scenes to test the effectiveness of our method in real rain scenarios.

We use the peak signal-to-noise ratio (PSNR) and structure similarity (SSIM) as the evaluation metrics. Higher values
of PSNR and SSIM indicate better performances. We convert the videos from the RGB color space to the YCbCr8 color
pace and then perform deraining on the Y channel.

.1.2. Compared methods
We compare our method with different types of video deraining methods, including traditional model-based video

eraining methods (Kim et al. [20], FastDeRain [19], and OTMS-CSC [21]) and deep learning-based video deraining
ethods (SpacCNN [5], J4RNet [6], and S2VD [28]). Moreover, we include two representative image deraining methods

PReNet [57] and SSIR [88]) into comparisons. SpacCNN, J4RNet, and PReNet are supervised methods. S2VD and SSIR are
emi-supervised methods.
The parameters of compared traditional methods (Kim et al. [20], FastDeRain [19], and OTMS-CSC [21]) are adaptively

uned for different rainy videos to obtain the best PSNR value. For deep learning methods (SpacCNN [5], J4RNet [6],
2VD [28], PReNet [57], and SSIR [88]), we use the pre-trained model provided by the authors. We hope to note that
he fundamental difference between these deep learning methods and our method is (semi-) supervised learning v.s.
nsupervised learning. The purpose of the comparison with these (semi-) supervised methods is to highlight the better
ata adaptability of our method for diverse rain scenarios. From this perspective, using re-training would defeat this
urpose, and is impractical in real scenarios without paired training data. Thus, we directly use the pre-trained models
f these (semi-) supervised methods. We remark that the pre-trained models of SpacCNN and S2VD are trained on the
TURain dataset [5], while the pre-trained model of J4RNet is trained on the RainSynLight25 and RainSynComplex25
atasets [6]. The pre-trained models of PReNet and SSIR are trained on the R100L dataset [45] and Rain1400 dataset [43],
espectively.

.1.3. Implementation details
In this subsection, we introduce the implementation details of our method from the following perspectives:

• Model hyperparameters setting The model hyperparameters of our method are {λi}
6
i=1. In all experiments, we fix

λ1 = 500, λ3 = 0.002, and λ5 = 0.02 and select λ2, λ4, and λ6 from the candidate sets {2×10−4, 4×10−4, 6×10−4
},

{0.5 × 10−2, 1 × 10−2, 1.5 × 10−2
}, and {2 × 10−3, 4 × 10−3, 6 × 10−3

} respectively to obtain the best PSNR value
(simulated data) or visual result (real-world data).

5 http://trace.eas.asu.edu/yuv/
6 http://jacarini.dinf.usherbrooke.ca/dataset2014/
7 https://github.com/hotndy/SPAC-SupplementaryMaterials
8 https://en.wikipedia.org/wiki/YCbCr
9
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Table 2
The average quantitative results by different methods on simulated rainy videos in different datasets. PReNet and SSIR are image deraining
methods while other methods are video deraining methods. The best and second-best values are highlighted.
Dataset Metric Rainy PReNet SSIR Kim et al. FastDeRain OTMS-CSC SpacCNN J4RNet S2VD Ours

Case 1 PSNR 27.34 30.77 24.64 30.36 33.22 34.92 34.75 28.83 28.51 41.23
SSIM 0.8520 0.9328 0.8723 0.9020 0.9290 0.9604 0.9554 0.9124 0.8796 0.9894

Case 2 PSNR 21.05 27.35 24.19 26.78 29.40 29.76 29.88 24.85 21.95 39.39
SSIM 0.6409 0.8461 0.8069 0.8056 0.8676 0.8997 0.8859 0.7976 0.6812 0.9846

Case 3 PSNR 21.83 25.18 25.27 26.72 30.21 28.47 28.43 28.05 24.20 38.39
SSIM 0.7929 0.8575 0.8800 0.8542 0.8872 0.9152 0.8895 0.9083 0.8570 0.9823

Case 4 PSNR 28.74 30.47 22.33 31.32 31.01 31.61 31.95 28.86 36.18 34.05
SSIM 0.9355 0.9389 0.8640 0.9339 0.9272 0.9523 0.9389 0.9259 0.9630 0.9556

• Algorithm hyperparameters setting In all experiments, we set the total iteration number of the ADMM-based
algorithm to 5000. The penalty parameter γ is set to 1. The iteration number, learning rate, and weight decay of the
Adam algorithm for solving sub-problems (14) and (15) are set to 10, 0.001, and 0.0001, respectively.

• Network structures For the modeling of the temporal signature, we use the classical FCN. The number of layers of the
FCN is 4. The nonlinear activation function of the FCN is the ReLU. For the modeling of the foreground, the probability
mask, and spatial abundance of the background, we use classical U-Net structures [79,80] with skip connections. The
number of downsampling layers and upsampling layers is 3. Please see more details for the structures of the classical
U-Net in [79,80]. Moreover, we use the default normal distribution in PyTorch9 to initialize the network parameters.

• Platforms The proposed method is implemented with PyTorch 1.7.0 on an Intel i9 CPU and RTX 3060 GPU. The
compared methods Kim et al. FastDeRain, and OTMS-CSC are implemented with MATLAB 2019b. SpacCNN, J4RNet,
S2VD, PReNet, and SSIR are implemented with PyTorch 1.7.0.

Next, we discuss the influence of the model hyperparameters on the deraining performance. In the proposed deraining
model, the hyperparameters, which balance different loss terms, are {λi}

6
i=1. To comprehensively investigate the influences

of different hyperparameters, we conduct experiments on the synthetic data Car and Building in Case 1 with different
values of hyperparameters; see Fig. 10. Here, we investigate the influence of each hyperparameter by changing its value
and fixing the others. We can observe that it is important to set a suitable value of hyperparameters to obtain good
performances, and our method is relatively more robust to the values of λ1, λ3, and λ5. Motivated by these observations,
n the main experiments, we fix λ1 = 500, λ3 = 0.002, and λ5 = 0.02 and select λ2, λ4, and λ6 from the candidate sets
2 × 10−4, 4 × 10−4, 6 × 10−4

}, {0.5 × 10−2, 1 × 10−2, 1.5 × 10−2
}, and {2 × 10−3, 4 × 10−3, 6 × 10−3

} respectively to
obtain the best PSNR value.

3.2. Experimental results

The quantitative results for simulated data are shown in Tables 2. For Cases 1–3, our method considerably outperforms
compared methods in terms of PSNR and SSIM. The distribution shift between testing data and training data makes
supervised deep learning-based video deraining methods [5,6,28] hard to handle the complex scenarios in Cases 1–
3, resulting in less PSNR and SSIM values. Our unsupervised approach only uses the rainy video and has better data
adaptability for various datasets with different rain scenarios. Meanwhile, image deraining methods PReNet and SSIR
cannot utilize temporal information of videos. Our video deraining method considers the temporal consistency, and thus
our method is obviously superior to single image deraining methods for video deraining.

The performance of S2VD is slightly better than our method on Case 4 (i.e., the NTURain testing dataset [5]). The
possible reason is that the S2VD was pre-trained using the NTURain training dataset [5], and the NTURain training
dataset and the NTURain testing dataset may follow the same distribution. For wild datasets that do not follow the
same distribution as the NTURain training dataset (e.g., Cases 1–3), the performance of S2VD degrades. Our method
outperforms S2VD in Cases 1–31, which validates the better data adaptability of our method. Compared with (semi-)
supervised learning methods, our unsupervised method learns different CNN parameters for different rainy videos based
on the physical interpretations of foreground, background, and rain streaks. Thus, our method can more flexibly adapt to
diverse rain scenarios.

The visual results on simulated data are illustrated in Figs. 5–8. We can observe that our method well removes the
complex rain streaks and preserve the fine details in the videos. This is due to the comprehensive considerations of the
structures of the foreground, background, and rain streaks, where both the good data adaptability of hand-crafted priors
and the representation abilities of CNNs are well utilized.

The visual results on real-world data are illustrated in Fig. 9. We can observe that our unsupervised method shows
good data adaptability for different real-world rain scenarios as compared with (semi-) supervised methods. Specifically,

9 https://pytorch.org/docs/stable/nn.init.html
10
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Fig. 5. The deraining results by different methods on simulated data Truck, Waterfall, Highway, Car, and Building in Case 1. (The images are best
viewed in full-screen mode.).

Fig. 6. The deraining results by different methods on simulated data Truck, Waterfall, Highway, Car, and Building in Case 2. (The images are best
viewed in full-screen mode.).

our method can well remove the complex rain streaks in the videos and also preserve the edges and details. Meanwhile,
our method has stable performances for both heavy rain (the images in the 2nd and 4th rows in Fig. 9) and light rain (other
images in Fig. 9). As compared, the (semi-) supervised methods, which depend on training data, unavoidably suffer from
domain shift between real-world data and training data, limiting their performances in real scenarios. Our unsupervised
method does not depend on training data, and thus it can more flexibly handle diverse real-world complex rain scenarios.

Next, we discuss the effectiveness of our video deraining method for subsequent visual tasks, e.g., object detection
and instance segmentation. We first use different video deraining methods to process the rainy video Truck in Case 1
or deraining. Then, we selected three video frames in the deraining results to conduct the object detection and instance
egmentation experiments. By following classical object detection and instance segmentation methods [89], which use
he whole image as the network input, we separately feed the selected frames (images) into the mask R-CNN [89] pre-
rained in the PyTorch library to obtain the object detection and instance segmentation results, as shown in Fig. 14. We
an observe that rain streaks indeed seriously affect the accuracy of detection and segmentation according to the results
n the rainy video. Meanwhile, the detection and segmentation results with the proposed deraining method are the best
mong all results, which reveals the superiority of our method over compared video deraining methods for subsequent
isual tasks.
11
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Fig. 7. The deraining results by different methods on simulated data Bridge, Window, Square, Road, and Pedestrian in Case 3. (The images are best
iewed in full-screen mode.).

Fig. 8. The deraining results by different methods on a rainy video in Case 4. (The images are best viewed in full-screen mode.).

Fig. 9. The deraining results on real-world data. The size of these videos from top to down is 400 × 706 × 20, 400 × 700 × 20, 400 × 676 × 20,
80 × 640 × 20, 480 × 640 × 20, and 288 × 368 × 20. (The images are best viewed in full-screen mode.).

Since our method adaptively learns different CNN parameters for each observed rainy video in an unsupervised manner,
t is relatively time-consuming. We report the running time of different methods in Table 5. Future work on accelerating
he algorithm, e.g., by using the supervised pre-training [90] or meta learning [91], would be helpful to alleviate the
ime-consuming limitation.
12



J.-H. Zhuang, Y.-S. Luo, X.-L. Zhao et al. Journal of Computational and Applied Mathematics 436 (2024) 115431

m
v

3

b
r
(
D
s
m

s
r
s
a
d

3

a
i
Q
r
S
o
t
b

Fig. 10. The PSNR values with respect to the values of different hyperparameters on simulated data Car (top row) and Building (bottom row) in
Case 1.

Fig. 11. Illustrations of the foreground, the background, the rain streaks, and the deraining result at different iteration steps by using the proposed
ethod on simulated data Truck in Case 1 and the deraining results by DIP [79], Double-DIP [84], and DVP [68]. Our method decomposes the rainy
ideo into the foreground, background, and rain streaks to more accurately model each component.

.3. Relations with deep image prior

Compared with deep image prior (DIP) family methods [68,79,84], we decompose the rainy video into the foreground,
ackground, and rain streaks to better model each component. In Fig. 11, we show the foreground, the background, and
ain streaks obtained by our method at different iteration steps. Meanwhile, we use the DIP [79], the deep video prior
DVP)10 [68], and the Double-DIP [84] as baselines. Our method accurately separates different components, while DIP,
VP, and Double-DIP fail to separate the rain streaks. Although DIP can correct flickering artifacts in videos [68], rain
treaks have regular structures which cannot be eliminated by the DIP. Our method comprehensively considers foreground
odeling, background modeling, and rain streaks modeling to achieve better performance.
Meanwhile, although DIP has been applied for related low-level visual tasks, i.e., the foreground–background image

eparation by using the Double-DIP [84], we remark that the Double-DIP [84] fails to separate the clean video and
ain streaks; see Fig. 11. For video deraining, we elaborately design the modeling of background, foreground, and rain
treaks, where the modeling of basic components, e.g., structured rain streaks and the low-rank background factorization
re significantly different from Double-DIP [84]. Thus, the advantages of our modeling over Double-DIP [84] for video
eraining are clear and significant.

.4. Comparisons with other unsupervised methods

In this section, we compare our method with other unsupervised/self-supervised video deraining methods (SLDNet [63]
nd Zhuang et al. [72]) on the NTURain real-world dataset [5]. We report both visual results and quantitative results
n Fig. 15. Since there is no ground-truth for real-world data, we consider the non-reference metrics Naturalness Image
uality Evaluator (NIQE) and Perception-based Image Quality Evaluator (PIQE) [25] to measure the quality of the deraining
esults (Lower NIQE and PIQE values indicate better performances). Since we are unable to successfully run the code of
LDNet, the reported results of SLDNet are provided by the authors from email communications. From Fig. 15, we can
bserve that our method obtains the best quantitative results. Visually, our method preserves the video details better
han other methods. The superior performance of our method is attributed to the elaborate modeling of foreground,
ackground, and rain streaks, which lead to more promising performances on real-world rain scenarios.

10 We use the GCANet [58] as the single image deraining method, which is needed by the DVP framework.
13
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Fig. 12. The deraining results by our method with different foreground priors. (1) Without foreground priors. (2) With foreground TV prior. (3) Our
method.

Fig. 13. The deraining results by our method with different background modeling methods. (1) Without affine operator. (2) Without low-rank prior.
(3) Our method.

Table 3
The quantitative results by our method with different rain
streaks modeling methods on simulated data Car in Case 1.
Metric (1) (2) (3) Ours

PSNR 38.24 40.19 33.89 43.97
SSIM 0.9803 0.9871 0.9835 0.9933

(1) Without LTV loss ∥∇θR∥ℓ1 . (2) Without LTV loss
∥∇θR∥ℓ1 , with ∥∇yR∥ℓ1 . (3) Without ∥R∥ℓ1 .

.5. Ablation study

.5.1. Contribution of foreground modeling
We employ a U-Net fξ (·) to unsupervisedly capture the foreground F . To test its effectiveness, we consider two

aselines. The first one is our method without the U-Net fξ (·), i.e., without foreground priors. The second one is our
ethod without the U-Net fξ (·) but with an additional foreground smooth prior (i.e., with the loss function ∥F ∥TV) [21].
he results on simulated data Car in Case 1 are shown in Fig. 12. The U-Net can more faithfully preserve the details of the
oreground compared with hand-crafted TV regularization. This reveals that the deep U-Net brings good representation
bilities to better characterize the complex foreground scenes.

.5.2. Contribution of background modeling
We employ a disentangled spatial–temporal network with the affine operator to capture the dynamic background.

o test the effectiveness, we consider two baselines. The first one is our method without the affine operator τψ (·). The
econd one is our method without the low-rank prior, i.e., we directly use a U-Net to model B without low-rankness and
he affine operator. The results on Car in Case 1 are shown in Fig. 13. We can observe that the affine operator and the
ow-rank prior are both important in our deraining framework.

.5.3. Contribution of rain streaks modeling
We consider the directional gradient prior and the sparse prior for rain streaks modeling. To test the effectiveness,

e consider three baselines. The first one is our method without the LTV loss ∥∇θR ∥ℓ1 . The second one is our method
ithout the LTV loss but with the vertical gradient prior, i.e., with the loss ∥∇yR ∥ℓ1 . The third one is our method without
he sparse loss ∥R ∥ℓ1 . The results are shown in Table 3. We can observe that the LTV loss and the sparse loss are both
mportant in our method.

.5.4. Contribution of probability mask loss
Next we analyze the influence of the probability mask loss Lmask, which includes the close-to-binary constraint

/∥Pκ − 0.5∥ℓ1 , the sparse constraint ∥Pκ∥ℓ1 , and the smooth constraint ∥Pκ∥TV. We remove each of these terms and
how the quantitative results in Table 4. We can observe that each term in Lmask contributes to the good performance of
ur method.
14
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Fig. 14. Three frames of the deraining results (the 1st, 3rd, and 5th rows) by different methods on Truck in Case 1 and the corresponding object
detection and instance segmentation results (the 2nd, 4th, and 6th rows) using the mask R-CNN. .

Fig. 15. The deraining results by different methods on two real-world rainy videos in the NTURain dataset.

Table 4
The influence of terms related to the probability mask loss
Lmask on simulated data Car in Case 1.
Metric (1) (2) (3) Ours

PSNR 42.02 40.26 41.15 43.97
SSIM 0.9899 0.9853 0.9872 0.9933

(1) Without 1/∥Pκ − 0.5∥ℓ1 . (2) Without ∥Pκ∥ℓ1 . (3)
Without ∥Pκ∥TV .
15
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Table 5
The average running time (s) of different methods in different cases.
Dataset PReNet SSIR Kim et al. FastDeRain OTMS-CSC SpacCNN J4RNet S2VD Ours

Case 1 7.65 12.57 1153.21 4.23 120.32 123.35 230.11 2.03 1096.32
Case 2 7.75 12.65 1123.01 4.01 121.65 127.99 245.19 2.10 1089.07
Case 3 7.71 12.42 1151.96 4.29 125.13 121.59 238.10 2.22 1081.88
Case 4 12.36 20.11 1849.36 7.21 207.02 201.35 366.59 3.91 1502.13

4. Conclusion

This paper proposes an unsupervised video deraining method by solely using the observed rainy video. The deep
oreground–background modeling more appropriately exploits the complex structures of the clean video with compact
epresentation abilities and the simple yet effective LTV regularization elegantly captures the structures of rain streaks.
he modeling of the clean video and rain streaks organically integrate to enhance the deraining performance. As a result,
ur method can effectively remove the rain streaks in videos and preserve the image details, as validated by extensive
xperiments on both synthetic data and real-world data.
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Data will be made available on request.

cknowledgments

This research is supported by NSFC, China (No. 12171072, 62131005) and the National Key Research and Development
rogram of China (No. 2020YFA0714001).

eferences

[1] C. Feichtenhofer, X3D: Expanding architectures for efficient video recognition, in: IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR, 2020, pp. 200–210.

[2] S. Beery, G. Wu, V. Rathod, R. Votel, J. Huang, Context R-CNN: Long term temporal context for per-camera object detection, in: IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR, 2020, pp. 13072–13082.

[3] Y. Zhang, Z. Qiu, T. Yao, C.-W. Ngo, D. Liu, T. Mei, Transferring and regularizing prediction for semantic segmentation, in: IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR, 2020, pp. 9618–9627.

[4] C.H. Bahnsen, T.B. Moeslund, Rain removal in traffic surveillance: Does it matter? IEEE Trans. Intell. Transp. Syst. 20 (8) (2019) 2802–2819.
[5] J. Chen, C.-H. Tan, J. Hou, L.-P. Chau, H. Li, Robust video content alignment and compensation for rain removal in a CNN framework, in: IEEE/CVF

Conference on Computer Vision and Pattern Recognition, CVPR, 2018, pp. 6286–6295.
[6] J. Liu, W. Yang, S. Yang, Z. Guo, Erase or fill? Deep joint recurrent rain removal and reconstruction in videos, in: IEEE/CVF Conference on

Computer Vision and Pattern Recognition, CVPR, 2018, pp. 3233–3242.
[7] K. Garg, S. Nayar, Detection and removal of rain from videos, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vol. 1,

CVPR, 2004.
[8] K. Garg, S. Nayar, When does a camera see rain? in: IEEE International Conference on Computer Vision, Vol. 2, ICCV, 2, 2005, pp. 1067–1074.
[9] S. You, R.T. Tan, R. Kawakami, Y. Mukaigawa, K. Ikeuchi, Adherent raindrop modeling, detection and removal in video, IEEE Trans. Pattern Anal.

Mach. Intell. 38 (9) (2016) 1721–1733.
[10] Y. Wang, T.-Z. Huang, X.-L. Zhao, T.-X. Jiang, Video deraining via nonlocal low-rank regularization, Appl. Math. Model. 79 (2020) 896–913.
[11] V. Santhaseelan, V.K. Asari, Utilizing local phase information to remove rain from video, Int. J. Comput. Vis. 112 (1) (2015) 71–89.
[12] X. Zhang, H. Li, Y. Qi, W.K. Leow, T.K. Ng, Rain removal in video by combining temporal and chromatic properties, in: International Conference

on Multimedia and Expo, ICME, 2006, pp. 461–464.
[13] Y.-L. Chen, C.-T. Hsu, A generalized low-rank appearance model for spatio-temporally correlated rain streaks, in: IEEE International Conference

on Computer Vision, ICCV, 2013, pp. 1968–1975.
[14] W. Ren, J. Tian, Z. Han, A. Chan, Y. Tang, Video desnowing and deraining based on matrix decomposition, in: IEEE/CVF Conference on Computer

Vision and Pattern Recognition, CVPR, 2017, pp. 2838–2847.
[15] W. Wei, L. Yi, Q. Xie, Q. Zhao, D. Meng, Z. Xu, Should we encode rain streaks in video as deterministic or stochastic? in: IEEE International

Conference on Computer Vision, ICCV, 2017, pp. 2535–2544.
[16] M. Li, Q. Xie, Q. Zhao, W. Wei, S. Gu, J. Tao, D. Meng, Video rain streak removal by multiscale convolutional sparse coding, in: IEEE/CVF

Conference on Computer Vision and Pattern Recognition, CVPR, 2018, pp. 6644–6653.
[17] L.-J. Deng, T. Huang, X.-L. Zhao, T.-X. Jiang, A directional global sparse model for single image rain removal, Appl. Math. Model. 59 (2018)

662–679.
[18] T.-X. Jiang, T.-Z. Huang, X.-L. Zhao, L.-J. Deng, Y. Wang, A novel tensor-based video rain streaks removal approach via utilizing discriminatively

intrinsic priors, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2017, pp. 2818–2827.
[19] T.-X. Jiang, T.-Z. Huang, X.-L. Zhao, L.-J. Deng, Y. Wang, FastDeRain: A novel video rain streak removal method using directional gradient priors,

IEEE Trans. Image Process. 28 (4) (2019) 2089–2102.
[20] J.-H. Kim, J.-Y. Sim, C.-S. Kim, Video deraining and desnowing using temporal correlation and low-rank matrix completion, IEEE Trans. Image

Process. 24 (9) (2015) 2658–2670.
[21] M. Li, X. Cao, Q. Zhao, L. Zhang, D. Meng, Online rain/snow removal from surveillance videos, IEEE Trans. Image Process. 30 (2021) 2029–2044.
[22] K. Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang, Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising, IEEE Trans.

Image Process. 26 (7) (2017) 3142–3155.
16

http://refhub.elsevier.com/S0377-0427(23)00375-8/sb1
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb1
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb1
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb2
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb2
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb2
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb3
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb3
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb3
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb4
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb5
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb5
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb5
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb6
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb6
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb6
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb7
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb7
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb7
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb8
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb9
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb9
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb9
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb10
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb11
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb12
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb12
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb12
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb13
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb13
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb13
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb14
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb14
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb14
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb15
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb15
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb15
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb16
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb16
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb16
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb17
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb17
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb17
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb18
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb18
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb18
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb19
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb19
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb19
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb20
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb20
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb20
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb21
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb22
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb22
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb22


J.-H. Zhuang, Y.-S. Luo, X.-L. Zhao et al. Journal of Computational and Applied Mathematics 436 (2024) 115431
[23] A. Kappeler, S. Yoo, Q. Dai, A.K. Katsaggelos, Video super-resolution with convolutional neural networks, IEEE Trans. Comput. Imaging 2 (2)
(2016) 109–122.

[24] R. Hou, F. Li, IDPCNN: Iterative denoising and projecting CNN for MRI reconstruction, J. Comput. Appl. Math. 406 (2022) 113973.
[25] W. Yang, R.T. Tan, S. Wang, Y. Fang, J. Liu, Single image deraining: From model-based to data-driven and beyond, IEEE Trans. Pattern Anal.

Mach. Intell. 43 (11) (2021) 4059–4077.
[26] W. Yang, J. Liu, J. Feng, Frame-consistent recurrent video deraining with dual-level flow, in: IEEE/CVF Conference on Computer Vision and

Pattern Recognition, CVPR, 2019, pp. 1661–1670.
[27] T. Liu, M. Xu, Z. Wang, Removing rain in videos: A large-scale database and a two-stream convlstm approach, in: International Conference on

Multimedia and Expo, ICME, 2019, pp. 664–669.
[28] Z. Yue, J. Xie, Q. Zhao, D. Meng, Semi-supervised video deraining with dynamical rain generator, in: IEEE/CVF Conference on Computer Vision

and Pattern Recognition, CVPR, 2021, pp. 642–652.
[29] J. Liu, W. Yang, S. Yang, Z. Guo, D3R-Net: Dynamic routing residue recurrent network for video rain removal, IEEE Trans. Image Process. 28

(2) (2019) 699–712.
[30] X. Liu, R. Liu, L. Ma, X. Fan, Z. Luo, Spatial-temporal integration network with self-guidance for robust video deraining, in: International

Conference on Multimedia and Expo, ICME, 2021.
[31] W. Zhong, X. Zhang, L. Ma, R. Liu, X. Fan, Z. Luo, Star-net: Spatial-temporal attention residual network for video deraining, in: International

Conference on Multimedia and Expo, ICME, 2021.
[32] X. Xue, X. Meng, L. Ma, Y. Wang, R. Liu, X. Fan, Searching frame-recurrent attentive deformable network for real-time video deraining, in:

International Conference on Multimedia and Expo, ICME, 2021.
[33] L. Ma, R. Liu, X. Zhang, W. Zhong, X. Fan, Video deraining via temporal aggregation-and-guidance, in: International Conference on Multimedia

and Expo, ICME, 2021.
[34] Y.-T. Wang, X.-L. Zhao, T.-X. Jiang, L.-J. Deng, Y. Chang, T.-Z. Huang, Rain streaks removal for single image via kernel-guided convolutional

neural network, IEEE Trans. Neural Netw. Learn. Syst. 32 (8) (2021) 3664–3676.
[35] C. Yu, Y. Chang, Y. Li, X. Zhao, L. Yan, Unsupervised image deraining: Optimization model driven deep CNN, in: ACM International Conference

on Multimedia, ACM MM, 2021, pp. 2634–2642.
[36] L.-W. Kang, C.-W. Lin, Y.-H. Fu, Automatic single-image-based rain streaks removal via image decomposition, IEEE Trans. Image Process. 21 (4)

(2012) 1742–1755.
[37] Y. Luo, Y. Xu, H. Ji, Removing rain from a single image via discriminative sparse coding, in: IEEE International Conference on Computer Vision,

ICCV, 2015, pp. 3397–3405.
[38] J.-H. Kim, C. Lee, J.-Y. Sim, C.-S. Kim, Single-image deraining using an adaptive nonlocal means filter, in: International Conference on Image

Processing, ICIP, 2013, pp. 914–917.
[39] H. Zhang, V.M. Patel, Convolutional sparse and low-rank coding-based rain streak removal, in: IEEE/CVF Winter Conference on Applications of

Computer Vision, WACV, 2017, pp. 1259–1267.
[40] Y. Li, R.T. Tan, X. Guo, J. Lu, M.S. Brown, Rain streak removal using layer priors, in: IEEE/CVF Conference on Computer Vision and Pattern

Recognition, CVPR, 2016, pp. 2736–2744.
[41] S. Yan, G. Ni, T. Zeng, Image restoration based on fractional-order model with decomposition: texture and cartoon, Comput. Appl. Math. 40

(2021) 304.
[42] X. Fu, J. Huang, X. Ding, Y. Liao, J. Paisley, Clearing the skies: A deep network architecture for single-image rain removal, IEEE Trans. Image

Process. 26 (6) (2017) 2944–2956.
[43] X. Fu, J. Huang, D. Zeng, Y. Huang, X. Ding, J. Paisley, Removing rain from single images via a deep detail network, in: IEEE/CVF Conference

on Computer Vision and Pattern Recognition, CVPR, 2017, pp. 1715–1723.
[44] S. Deng, M. Wei, J. Wang, Y. Feng, L. Liang, H. Xie, F.L. Wang, M. Wang, Detail-recovery image deraining via context aggregation networks, in:

IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2020, pp. 14548–14557.
[45] W. Yang, R.T. Tan, J. Feng, J. Liu, Z. Guo, S. Yan, Deep joint rain detection and removal from a single image, in: IEEE/CVF Conference on Computer

Vision and Pattern Recognition, CVPR, 2017, pp. 1685–1694.
[46] H. Zhang, V.M. Patel, Density-aware single image de-raining using a multi-stream dense network, in: IEEE/CVF Conference on Computer Vision

and Pattern Recognition, CVPR, 2018, pp. 695–704.
[47] H. Wang, Q. Xie, Q. Zhao, D. Meng, A model-driven deep neural network for single image rain removal, in: IEEE/CVF Conference on Computer

Vision and Pattern Recognition, CVPR, 2020, pp. 3100–3109.
[48] H. Wang, Z. Yue, Q. Xie, Q. Zhao, Y. Zheng, D. Meng, From rain generation to rain removal, in: IEEE/CVF Conference on Computer Vision and

Pattern Recognition, CVPR, 2021, pp. 14791–14801.
[49] R. Yasarla, V.A. Sindagi, V.M. Patel, Syn2Real transfer learning for image deraining using Gaussian processes, in: IEEE/CVF Conference on

Computer Vision and Pattern Recognition, CVPR, 2020, pp. 2723–2733.
[50] L. Zhu, Z. Deng, X. Hu, H. Xie, X. Xu, J. Qin, P.-A. Heng, Learning gated non-local residual for single-image rain streak removal, IEEE Trans.

Circuits Syst. Video Technol. 31 (6) (2021) 2147–2159.
[51] M. Zhou, J. Xiao, Y. Chang, X. Fu, A. Liu, J. Pan, Z.-J. Zha, Image de-raining via continual learning, in: IEEE/CVF Conference on Computer Vision

and Pattern Recognition, CVPR, 2021, pp. 4905–4914.
[52] K. Jiang, Z. Wang, P. Yi, C. Chen, B. Huang, Y. Luo, J. Ma, J. Jiang, Multi-scale progressive fusion network for single image deraining, in: IEEE/CVF

Conference on Computer Vision and Pattern Recognition, CVPR, 2020, pp. 8343–8352.
[53] T. Wang, X. Yang, K. Xu, S. Chen, Q. Zhang, R.W. Lau, Spatial attentive single-image deraining with a high quality real rain dataset, in: IEEE/CVF

Conference on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 12262–12271.
[54] K. Jiang, Z. Wang, P. Yi, C. Chen, Z. Han, T. Lu, B. Huang, J. Jiang, Decomposition makes better rain removal: An improved attention-guided

deraining network, IEEE Trans. Circuits Syst. Video Technol. 31 (10) (2021) 3981–3995.
[55] H. Zhang, V. Sindagi, V.M. Patel, Image de-raining using a conditional generative adversarial network, IEEE Trans. Circuits Syst. Video Technol.

30 (11) (2020) 3943–3956.
[56] Y. Weng, G. Yang, C. Tang, H. Yang, R. Lu, F. Xu, J. Luo, iCycleGAN: An improved CycleGAN for rain streak removal from single image, in:

International Conference on Industrial Artificial Intelligence, IAI, 2022, pp. 1–6.
[57] D. Ren, W. Zuo, Q. Hu, P. Zhu, D. Meng, Progressive image deraining networks: A better and simpler baseline, in: IEEE/CVF Conference on

Computer Vision and Pattern Recognition, CVPR, 2019, pp. 3932–3941.
[58] D. Chen, M. He, Q. Fan, J. Liao, L. Zhang, D. Hou, L. Yuan, G. Hua, Gated context aggregation network for image dehazing and deraining, in:

WACV, 2019, pp. 1375–1383.
[59] J. Xiao, M. Zhou, X. Fu, A. Liu, Z.-J. Zha, Improving de-raining generalization via neural reorganization, in: IEEE International Conference on

Computer Vision, ICCV, 2021, pp. 4967–4976.
[60] F. Jia, W.H. Wong, T. Zeng, DDUNet: Dense dense U-net with applications in image denoising, in: IEEE/CVF International Conference on Computer

Vision Workshops, ICCVW, 2021, pp. 354–364.
17

http://refhub.elsevier.com/S0377-0427(23)00375-8/sb23
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb23
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb23
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb24
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb25
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb25
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb25
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb26
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb26
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb26
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb27
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb27
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb27
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb28
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb28
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb28
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb29
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb29
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb29
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb30
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb30
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb30
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb31
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb31
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb31
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb32
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb32
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb32
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb33
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb33
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb33
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb34
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb34
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb34
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb35
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb35
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb35
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb36
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb36
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb36
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb37
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb37
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb37
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb38
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb38
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb38
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb39
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb39
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb39
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb40
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb40
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb40
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb41
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb41
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb41
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb42
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb42
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb42
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb43
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb43
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb43
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb44
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb44
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb44
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb45
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb45
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb45
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb46
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb46
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb46
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb47
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb47
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb47
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb48
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb48
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb48
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb49
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb49
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb49
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb50
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb50
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb50
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb51
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb51
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb51
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb52
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb52
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb52
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb53
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb53
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb53
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb54
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb54
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb54
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb55
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb55
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb55
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb56
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb56
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb56
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb57
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb57
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb57
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb58
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb58
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb58
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb59
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb59
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb59
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb60
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb60
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb60


J.-H. Zhuang, Y.-S. Luo, X.-L. Zhao et al. Journal of Computational and Applied Mathematics 436 (2024) 115431
[61] K. Zhang, D. Li, W. Luo, W. Ren, W. Liu, Enhanced spatio-temporal interaction learning for video deraining: A faster and better framework,
IEEE Trans. Pattern Anal. Mach. Intell. (2022).

[62] P. Mu, Z. Liu, Y. Liu, R. Liu, X. Fan, Triple-level model inferred collaborative network architecture for video deraining, IEEE Trans. Image Process.
31 (2022) 239–250.

[63] W. Yang, R.T. Tan, S. Wang, J. Liu, Self-learning video rain streak removal: When cyclic consistency meets temporal correspondence, in: IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR, 2020, pp. 1717–1726.

[64] W. Yan, R.T. Tan, W. Yang, D. Dai, Self-aligned video deraining with transmission-depth consistency, in: IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR, 2021, pp. 11961–11971.

[65] J.-H. Kim, J.-Y. Sim, C.-S. Kim, Stereo video deraining and desnowing based on spatiotemporal frame warping, in: International Conference on
Image Processing, ICIP, 2014, pp. 5432–5436.

[66] L. Zhu, H. Fan, Y. Luo, M. Xu, Y. Yang, Temporal cross-layer correlation mining for action recognition, IEEE Trans. Multimed. 24 (2022) 668–676.
[67] L. Zhu, Z. Xu, Y. Yang, Bidirectional multirate reconstruction for temporal modeling in videos, in: IEEE/CVF Conference on Computer Vision and

Pattern Recognition, CVPR, 2017, pp. 1339–1348.
[68] C. Lei, Y. Xing, Q. Chen, Blind video temporal consistency via deep video prior, in: Neural Information Processing Systems (NeurIPS), Vol. 33,

2020, pp. 1083–1093.
[69] P. Cascarano, M.C. Comes, A. Mencattini, M.C. Parrini, E.L. Piccolomini, E. Martinelli, Recursive Deep Prior Video: A super resolution algorithm

for time-lapse microscopy of organ-on-chip experiments, Med. Image Anal. 72 (2021) 102124.
[70] H. Zhang, L. Mai, H. Jin, Z. Wang, N. Xu, J. Collomosse, An internal learning approach to video inpainting, in: IEEE International Conference on

Computer Vision, ICCV, 2019, pp. 2720–2729.
[71] W. Yang, R.T. Tan, S. Wang, A.C. Kot, J. Liu, Learning to remove rain in video with self-supervision, IEEE Trans. Pattern Anal. Mach. Intell. (2022)

http://dx.doi.org/10.1109/TPAMI.2022.3186629.
[72] J.-H. Zhuang, Y.-S. Luo, X.-L. Zhao, T.-X. Jiang, Reconciling hand-crafted and self-supervised deep priors for video directional rain streaks removal,

IEEE Signal Process. Lett. 28 (2021) 2147–2151.
[73] O. Barnich, M. Van Droogenbroeck, ViBe: A universal background subtraction algorithm for video sequences, IEEE Trans. Image Process. 20 (6)

(2011) 1709–1724.
[74] L. Maddalena, A. Petrosino, A self-organizing approach to background subtraction for visual surveillance applications, IEEE Trans. Image Process.

17 (7) (2008) 1168–1177.
[75] T.-X. Jiang, T.-Z. Huang, X.-L. Zhao, L.-J. Deng, Multi-dimensional imaging data recovery via minimizing the partial sum of tubal nuclear norm,

J. Comput. Appl. Math. 372 (2020) 112680.
[76] A. Aravkin, S. Becker, V. Cevher, P. Olsen, A variational approach to stable principal component pursuit, in: Conference on Uncertainty in

Artificial Intelligence, UAI, 2014.
[77] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, S. Yan, Tensor robust principal component analysis with a new tensor nuclear norm, IEEE Trans. Pattern

Anal. Mach. Intell. 42 (4) (2020) 925–938.
[78] T.-X. Jiang, M.K. Ng, X.-L. Zhao, T.-Z. Huang, Framelet representation of tensor nuclear norm for third-order tensor completion, IEEE Trans.

Image Process. 29 (2020) 7233–7244.
[79] V. Lempitsky, A. Vedaldi, D. Ulyanov, Deep image prior, in: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, 2018, pp.

9446–9454.
[80] O. Ronneberger, P. Fischer, T. Brox, U-Net: Convolutional networks for biomedical image segmentation, in: MICCAI, 2015, pp. 234–241.
[81] J.M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, J. Chanussot, Hyperspectral unmixing overview: Geometrical, statistical,

and sparse regression-based approaches, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5 (2) (2012) 354–379.
[82] Y.-C. Miao, X.-L. Zhao, X. Fu, J.-L. Wang, Y.-B. Zheng, Hyperspectral denoising using unsupervised disentangled spatiospectral deep priors, IEEE

Trans. Geosci. Remote Sens. 60 (2022) 1–16.
[83] D. Ren, K. Zhang, Q. Wang, Q. Hu, W. Zuo, Neural blind deconvolution using deep priors, in: IEEE/CVF Conference on Computer Vision and

Pattern Recognition, CVPR, 2020, pp. 3338–3347.
[84] Y. Gandelsman, A. Shocher, M. Irani, ‘‘Double-DIP’’: Unsupervised image decomposition via coupled deep-image-priors, in: IEEE/CVF Conference

on Computer Vision and Pattern Recognition, CVPR, 2019, pp. 11018–11027.
[85] J.-H. Yang, X.-L. Zhao, T.-H. Ma, Y. Chen, T.-Z. Huang, M. Ding, Remote sensing images destriping using unidirectional hybrid total variation

and nonconvex low-rank regularization, J. Comput. Appl. Math. 363 (2020) 124–144.
[86] D. Kingma, J. Ba, ADAM: A method for stochastic optimization, in: ICLR, 2014.
[87] K. Garg, S.K. Nayar, Photorealistic rendering of rain streaks, in: ACM Special Interest Group for Computer Graphics, ACM SIGGRAPH, 2006, pp.

996–1002.
[88] W. Wei, D. Meng, Q. Zhao, Z. Xu, Y. Wu, Semi-supervised transfer learning for image rain removal, in: IEEE/CVF Conference on Computer Vision

and Pattern Recognition, CVPR, 2019, pp. 3872–3881.
[89] K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask R-CNN, in: IEEE International Conference on Computer Vision, ICCV, 2017, pp. 2980–2988.
[90] R. Barbano, J. Leuschner, M. Schmidt, A. Denker, A. Hauptmann, P. Maass, B. Jin, An educated warm start for deep image prior-based micro CT

reconstruction, IEEE Trans. Comput. Imaging 8 (2022) 1210–1222.
[91] K. Zhang, M. Xie, M. Gor, Y.-T. Chen, Y. Zhou, C.A. Metzler, MetaDIP: Accelerating deep image prior with meta learning, 2022, arXiv:2209.08452.
18

http://refhub.elsevier.com/S0377-0427(23)00375-8/sb61
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb61
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb61
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb62
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb62
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb62
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb63
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb63
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb63
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb64
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb64
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb64
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb65
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb65
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb65
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb66
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb67
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb67
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb67
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb68
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb68
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb68
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb69
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb69
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb69
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb70
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb70
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb70
http://dx.doi.org/10.1109/TPAMI.2022.3186629
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb72
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb72
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb72
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb73
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb73
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb73
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb74
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb74
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb74
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb75
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb75
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb75
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb76
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb76
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb76
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb77
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb77
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb77
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb78
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb78
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb78
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb79
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb79
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb79
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb80
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb81
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb81
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb81
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb82
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb82
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb82
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb83
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb83
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb83
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb84
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb84
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb84
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb85
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb85
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb85
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb86
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb87
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb87
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb87
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb88
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb88
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb88
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb89
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb90
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb90
http://refhub.elsevier.com/S0377-0427(23)00375-8/sb90
http://arxiv.org/abs/2209.08452

	Unsupervised video rain streaks removal with deep foreground–background modeling
	Introduction
	Related Work

	The Proposed Method
	Preliminaries
	Characterizations of Clean Video
	Unsupervised CNN for Foreground
	Disentangled Spatial–Temporal Network with Affine Operator for Background
	Learnable Probability Mask
	Learnable Optical Flow Field

	Characterizations of Rain Streaks
	Learnable Total Variation
	Sparsity of Rain Streaks

	Total Loss Function
	Algorithm

	Experiments
	Settings
	Datasets and Evaluation Metrics
	Compared Methods
	Implementation Details

	Experimental Results
	Relations with Deep Image Prior
	Comparisons with Other Unsupervised Methods
	Ablation Study
	Contribution of Foreground Modeling
	Contribution of Background Modeling
	Contribution of Rain Streaks Modeling
	Contribution of Probability Mask Loss


	Conclusion
	Data availability
	Acknowledgments
	References


